tRNA functional signatures classify plastids as late-branching cyanobacteria
نویسندگان
چکیده
منابع مشابه
Clustering signatures classify directed networks.
We use a clustering signature, based on a recently introduced generalization of the clustering coefficient to directed networks, to analyze 16 directed real-world networks of five different types: social networks, genetic transcription networks, word adjacency networks, food webs, and electric circuits. We show that these five classes of networks are cleanly separated in the space of clustering...
متن کاملDatabase tool CyanoClust: comparative genome resources of cyanobacteria and plastids
Cyanobacteria, which perform oxygen-evolving photosynthesis as do chloroplasts of plants and algae, are one of the best-studied prokaryotic phyla and one from which many representative genomes have been sequenced. Lack of a suitable comparative genomic database has been a problem in cyanobacterial genomics because many proteins involved in physiological functions such as photosynthesis and nitr...
متن کاملCyanoClust: comparative genome resources of cyanobacteria and plastids
Cyanobacteria, which perform oxygen-evolving photosynthesis as do chloroplasts of plants and algae, are one of the best-studied prokaryotic phyla and one from which many representative genomes have been sequenced. Lack of a suitable comparative genomic database has been a problem in cyanobacterial genomics because many proteins involved in physiological functions such as photosynthesis and nitr...
متن کاملPolyphyly of true branching cyanobacteria (Stigonematales).
Cyanobacteria with true branching are classified in Subsection V (formerly order Stigonematales) in the phylum CYANOBACTERIA: They exhibit a high degree of morphological complexity and are known from particular biotopes. Only a few stigonematalean morphotypes have been cultured, and therefore the high variability of morphotypes found in nature is under-represented in culture. Axenic cultures of...
متن کاملAn Early-Branching Freshwater Cyanobacterium at the Origin of Plastids
Photosynthesis evolved in eukaryotes by the endosymbiosis of a cyanobacterium, the future plastid, within a heterotrophic host. This primary endosymbiosis occurred in the ancestor of Archaeplastida, a eukaryotic supergroup that includes glaucophytes, red algae, green algae, and land plants [1-4]. However, although the endosymbiotic origin of plastids from a single cyanobacterial ancestor is fir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Evolutionary Biology
سال: 2019
ISSN: 1471-2148
DOI: 10.1186/s12862-019-1552-7